A Short-Term Prediction Model Based on Support Vector Regression Optimized by Artificial Fish-Swarm Algorithm
نویسندگان
چکیده
In urban management, it is important to precisely forecast the short-term demand for necessary resources, including water, electric power, and gas. Although a variety of prediction models have been proposed in literature, the underlying defects and limitations confine the effectiveness and forecasting precision of these models. In this paper, the shortterm prediction problem is modeled as a non-linear multivariate regression problem, which is solved by support vector regression (SVR). The parameters in SVR are optimized by artificial fish-swarm algorithm (AFSA). The proposed prediction model (termed SVRAFSA) overcomes the defects of existing prediction models, thus promoting forecasting precision. In order to verify the effectiveness and prediction precision of SVR-AFSA, this paper conducts experiments on a real dataset of two-month hourly water consumption. It also compares SVR-AFSA with two commonly adopted models, i.e., traditional BP neural network, and SVR optimized by grid method (SVR-grid). The experiments results show that SVR-AFSA outperforms these two models in prediction precision in terms of mean squared error (MSE) and mean absolute percentage error (MAPE).
منابع مشابه
Prediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine
Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...
متن کاملPrediction of soil cation exchange capacity using support vector regression optimized by genetic algorithm and adaptive network-based fuzzy inference system
Soil cation exchange capacity (CEC) is a parameter that represents soil fertility. Being difficult to measure, pedotransfer functions (PTFs) can be routinely applied for prediction of CEC by soil physicochemical properties that can be easily measured. This study developed the support vector regression (SVR) combined with genetic algorithm (GA) together with the adaptive network-based fuzzy infe...
متن کاملShort-Term Wind Speed Forecasting Using Support Vector Regression Optimized by Cuckoo Optimization Algorithm
This paper develops an effectively intelligent model to forecast short-term wind speed series. A hybrid forecasting technique is proposed based on recurrence plot (RP) and optimized support vector regression (SVR). Wind caused by the interaction of meteorological systems makes itself extremely unsteady and difficult to forecast. To understand the wind system, the wind speed series is analyzed u...
متن کاملStock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملPredicting tensile strength of rocks from physical properties based on support vector regression optimized by cultural algorithm
The tensile strength (TS) of rocks is an important parameter in the design of a variety of engineering structures such as the surface and underground mines, dam foundations, types of tunnels and excavations, and oil wells. In addition, the physical properties of a rock are intrinsic characteristics, which influence its mechanical behavior at a fundamental level. In this paper, a new approach co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015